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Abstract—Although traffic management methods are 

constantly evolving, traditional solutions are unable to adapt to the 

current dynamics of traffic. Machine learning methods provide 

promising results, but scientific dissertations usually work only on 

the theoretical basis of the models and do not take into account the 

legal requirements of traffic management. In the presented paper 

we propose a deep reinforcement learning-based multi-agent 

model called ReLight-WCTM that insists on maintaining reality 

at several points. We compared our model with the original signal 

setting of a real road network based on different metrics. 

According to the results, it can be stated that ReLight-WCTM 

exceeded the baseline settings in all parameters, presumably it can 

be an actual traffic management alternative. 

Keywords— Traffic Signal Control, Machine Learning, Deep 

Reinforcement Learning, Decentralized Multi-Agent 

I. INTRODUCTION 

Humanity is increasingly confronted with the depletion of 
our natural resources, its negative impact on ecology, so the 
issue of sustainability has become the focus of many researches. 
We must seize every opportunity we have to reduce our 
ecological footprint. One of the biggest causes of which is the 
ever-increasing vehicle traffic. The development of technology 
and urban detector infrastructure allows the application of 
machine learning algorithms, which is the basis of the present 
paper. 

The first traffic light was drafted in 1912 by a police officer 
in Salt Lake City and two years later was placed into traffic. 
Although more than 100 years have passed since then, 
contemporary goals have not changed: traffic management 
systems are responsible for avoiding congestion, better capacity 
utilization, improving safety and keep environmental 
considerations in focus. 

Commonly used traffic control systems are not able to 
respond to momentary changes in traffic, which is possible by 
the intelligent decision making presented in this paper. We 
examined reinforcement learning method, a specific branch of 
machine learning, the essence of which is the interaction of the 
learning agent with the environment and the maximization of the 
reward based on predefined metrics. Many studies have been 

presented dealing with optimizing the control of a single 
intersection, however, far fewer studies deal with the control of 
complex networks. The primary goal of our research was to 
preserve a high level of reality, as theoretical models often 
oversimplify the circumstances and do not meet the expected 
legal regulations. We developed the presented model in 
cooperation with the city management and transport 
professionals, which is a major step forward from theoretical 
analysis to real industrial use. Hence the name Reality Light 
WCTM or ReLight-WCTM for short where WCTM stands for 
the reward function. The training environment, i.e. the road 
network, was created on the basis of the real structure of the 
main road of a Hungarian city, Pécs, which contains a total of 
nine intersections controlled by traffic lights. The nodes are 
managed on the basis of a cooperative multi-agent solution, in 
which the agents also share information with each other. The 
Hungarian road operator provided for us the professionally 
designed signal phase plan currently in use in the city, which 
functioned as a baseline model. Evaluation of ReLight-WCTM 
and baseline setting was performed based on CO2 emission, 
waiting time, average speed and the number of halting vehicles. 

The structure of the article is as follows. We provide a brief 
overview of traditional and up-to-date traffic control methods 
supplemented by the technical background used in section II. 
Section III. is about the simulation environment and model 
parameters. In section IV. we present the achieved results, while 
in the last section we summarize the research. 

II. RELATED WORKS 

Several approaches have been proposed in the field of traffic 
management. Traditional solutions work with predefined phase 
durations, which usually vary depending on the time of day [1]. 
Signal control systems, which can also be considered classical, 
are able to adapt to traffic dynamics based on sensor data. One 
of the most popular solutions is the Webster method developed 
by Koonce et al [2], which tries to minimize the travel time at a 
single intersection using the so called Webster equation. During 
operation, it determines cycle duration and phase split. The 
model created by Varaiya focuses on the pressure on the signal 
phase, hence the name Max-pressure [3]. The pressure is 
determined by the difference between the number of vehicles 
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waiting for a given phase and the number of vehicles leaving the 
corresponding roads. The SCATS [4] and SCOOT [5] systems 
choose from predefined phase plans to optimize congestion and 
saturation. There is a great advantage in generating green waves 
on the road network. To facilitate this, Roess, Prassas, and 
McShane developed GreenWave, which reduces the number of 
stops by taking into account offsets between intersections [1]. 

Reinforcement learning has long been the focus of research 
in terms of traffic management. One of the most effective 
methods is Q-learning, the success of which has been proven by 
numerous studies [6] [7] [8] [9]. For more complex models, its 
extension with deep learning has been proposed [10]. Double 
DQN [11] [12], Dueling DQN [13] [14], and a mixture of the 
two algorithms, D3QN, were also examined for optimal signal 
control design [15]. 

A. Q-learning Variants 

Q-learning [16] is one of the most commonly used 
reinforcement learning algorithms due to its efficiency and 
simplicity. Although the A3C algorithm [17] is already 
beginning to take its place, more advanced Q-learning versions 
still serve as the basis for RL. Its operating principle was 
described in 1989 by Watkins, in which a Markov decision 
process (MDP) optimum search is performed by evaluating the 
effectiveness of possible actions for a given condition, 
calculated from the amount of reward or punishment and the 
value of the new state. This calculated effectiveness is called the 
Q-value, which is stored and assigned to the state-action pair in 
the Q-table. 

The method has strong limitations in terms of state space 
complexity, where the size of the Q-table can cause memory 
shortage problems. In such cases it is necessary to introduce the 
Deep Q-learning (DQN) [18] solution, during which the values 
of decisions are not determined in a tabular form, but are 
estimated using a neural network. To stabilize the training, we 
create a so-called Replay Buffer [19] that functions as the 
agent’s memory. At each step, we save here the values of the 
current state, the action, the reward and the state we have 
entered. The model is trained by random sampling from the 
Replay Buffer. 

As mentioned in standard Q-learning, when evaluating the 
effectiveness of a decision, we take into account the state we 
have reached. In the DQN algorithm, the same neural network 
estimates the efficiency of the current as well as the next state, 
which creates an unstable objective function during model 
training, which reduces convergence. To solve the problem, 
Haaselt, Guez, and Silver developed the Double DQN model 
[11] in which target values are fixed temporarily. It achieves this 
with a second neural network that is an exact copy of the primary 
one. The training of the secondary network is frozen for the 
entire length of the simulation, and the weights are synchronized 
with the primary neural network at given intervals.  

There may be cases where for a condition all actions have 
the same Q-value, i.e., none of the actions gives a better state 
than the others, they have the same result. The Dueling DQN 
model [13] described by Wang et al. is able to filter out such 
conditions, in which case it is not necessary to learn the value of 
the actions belonging to them, consequently stabilizing the 

training process. It is especially relevant in environments where 
the action does not always affect it substantially. In our case, this 
is a cardinal issue, since in traffic free periods the model must 
acquire the knowledge that it is not necessary to change the 
signal phase either. The D3QN model is a combination of these 
three solutions. 

B. Multi-Agent Reinforcement Learning (MARL) 

According to the highest level grouping of the multi-agent 
literature, we distinguish three types: the fully cooperative, the 
fully competitive, and a mixed category. The solution described 
in the paper belongs to the cooperative MARL systems. The aim 
of the agents is to maximize or minimize some optional 
parameter of the road network. A fully cooperative solution 
assumes that the common goal means a single common reward 
rather than separate rewards for agents, however, in our previous 
research [20], we concluded that a local reward may be a more 
effective solution. This is presumably due to the fact that for a 
large number of agents, the amount of the reward depends more 
on the decision of the other agents rather than on the specified 
agent. The second basic classification is whether it is a 
centralized system in which a central agent, either hierarchically 
or standalone controls the entire system, or whether it is a 
decentralized system with several separate agents. In this case, 
there is a generalized form of MDP called stochastic game. In 
ReLight-WCTM, we train a multitude of peer-to-peer agents 
without central control.  

As agents learn in a parallel way, their decisions influence 
the traffic density in the simulation. In practice, this process 
reduces the stationarity of the environment due to changes in the 
policies of other agents. Hence, agents need to discover 
information not only about their environment but also about 
other agents. However, too much information exploration, 
coupled with unpredictable operation due to random actions can 
destabilize the learning dynamics of other agents, thereby 
putting the learning agent himself in a more difficult situation. 
The problem can be avoided by making the policy of all other 
agents part of the state space, however, since the policy is 
represented in the form of a neural network, the size of its 
connection composition would make learning impossible. To 
increase the stationarity of the environment, agents share 
information with each other, which can be some kind of 
perception, representation, action, reward, and so on [21]. 

III. SIMULATION ENVIRONMENT AND MODEL PARAMETERS 

We simulated the road network and traffic with the SUMO 
open source traffic simulation software, in which we created an 
exact copy of the main road in Pécs. In addition to a wide range 
of configuration options, SUMO also provides the ability to 
visually inspect through its GUI module. The system can be 
easily modified on a Python basis using the TraCI control 
interface. The road section under study contains nine 
intersections controlled by traffic lights, as well as several 
pedestrian crossings. Each intersection is unique in its kind. The 
number of roads forming the intersection as well as the number 
of lanes of roads, the size and shape of the intersection and the 
number of traffic lights placed in it also differ. This is a 
significant change compared to generally studied “grid” network 
type maps. One of the nine intersections is shown in Fig 1. 



 

Fig. 1. The fifth intersection of the road network 

On-site real-world measurements were used to simulate 
traffic. The incoming vehicle numbers in the given time unit 
were determined based on the daily rush hour. The starting 
points are located at the tops of the inward-facing streets at the 
edge of the map. In addition to the real map, this possibility 
further expands the reality of learning, which is a central element 
of the present research. The vehicle frequencies measured 
during rush hours represent the frequented and less used routes, 
so during influencing the traffic density we focused on 
maintaining the proportions. There are currently four traffic 
dynamics alternating randomly per episode (1600 steps) during 
the training: 

• Rush hour with measured vehicle starting counts 

• Average turnover reduced by 30%  

• Low traffic reduced by 60% 

• Extra low traffic reduced by 90% to explore the traffic-

free periods 

At the start of each episode, a pre-learning 180-second long 
traffic recovery phase begins. This ensures the agent not always 
start learning with an empty road network that could distort its 
effectiveness. The maximum permitted speed is uniformly 13.9 
m/s (50 km/h) on each road section. The model checks every 
step for the presence of the gridlock phenomenon. In such a case, 
the traffic is congested to such an extent and in such a way that 
it also interfere the traffic of the crossing lane and blocks the 
entire intersection. Because nine agents are learning in parallel, 
the probability of the phenomenon occurring is very high. If we 
continue training, the traffic would remain the same regardless 
of the decision of the learning agent, so it would not receive 
adequate feedback in the form of a reward. The time to qualify 
as a gridlock is 200 seconds, measured with the vehicle waiting 
the longest. If the model detects a timeout, the agents are given 
a uniform penalty and then a new episode begins. 

The processing of camera images provides the basis for 
determining the state space. Depending on the characteristics of 
the road network, we simulated camera images with different 
visibility, the length of which varies between 20 meters and 40 
meters. Two types of data were extracted from the camera 
images: on one hand the number of vehicles seen on the camera 
and on the other hand their average speed. The state space also 
includes the current signal phase and the time spent in it in 
seconds. Our previous results [20] have shown that information 

sharing between agents effectively increases the discoverability 
of the simulation environment, therefore the state space was 
expanded with the sums of the number and average speed of 
vehicles, with the current signal phase, and the time spent in it 
in adjacent intersections 

The frequency of action taking is 3 seconds, in which the 
agents can make two decisions: prolong the current signal phase 
or interrupt it. The phase plan provided by the Hungarian road 
operator, which the agent modifies includes a red-yellow signal 
in addition to the simple red, yellow, and green signals, as well 
as an intermediate time. The intermediate time is a full extent 
red phase, with the aim of avoiding possible collisions. 
Maximum phase time has not been introduced in the present 
research, which may be an advantage during off-peak periods. 
The reward function is a modified version of Weighted 
Completed Trip Maximization (WCTM) [22]. The original 
function calculates the number of vehicles leaving the 
simulation at the end of their route weighted by the length of the 
shortest route. To reduce the delay of the reward we counted 
leaving vehicles in the intersection instead of the end of the 
network [23]. 

TABLE I.  PARAMETER SETTINGS USED DURING TRAINING 

Parameter settings 

Parameter Value 

Starting value of epsilon greedy policy 1.0 

Timesteps over which to anneal epsilon 10,000 

Minimum epsilon value 0.02 

Discount factor of Q-value update 0.9 

Learning rate of the Neural Network 0.0001 

Batch size 32 

Target model weight updating frequency 500 

Number of steps before starting learning 1000 

Size of the Replay Buffer 50,000 

Neural Network hidden layers 32, 128, 128 

For training, we used the open source Python package called 
RLlib, which has high scalability and an extensive list of 
available reinforcement learning-based algorithms. The neural 
network behind the algorithms is free to build, supporting most 
frameworks. Their library called Ray Tune can be linked to 
RLlib, with which we performed hyperparameter optimization 
in a grid search manner. ReLight-WCTM’s algorithm is D3QN 
with the hyperparameters in Table I.. 

IV. SIMULATION RESULTS 

ReLight-WCTM was trained in 600,000 steps, consisting of 
375 episodes and immediate interruption in the case of a 
gridlock. The total learning time means 1,800,000 seconds of 
real traffic, which is nearly 21 days. The testing process 
consisted of three conditions, low, medium, and high traffic 
demand. In each condition, the model decided through 1000 
steps, which means 5,000 real seconds, nearly an hour and a half 
for a given traffic dynamic. We compared the proposed 
algorithm and the baseline model by measuring CO2 emission 
(g/s), average speed (m/s)(AvSp), number of halting vehicles 
(pcs)(HaVe) and waiting time (s)(WaTi). 



TABLE II.  SUMMARY OF METRIC AVERAGES 

Type 
Condition I. Condition II. Condition III. 

Baseline 
ReLight- 

WCTM 
Baseline 

ReLight- 
WCTM 

Baseline 
ReLight- 

WCTM 

CO2 147.949 142.517 250.154 241.038 422.776 366.954 

HaVe 25.771 24.707 43.686 38.744 82.646 58.685 

AvSp 12.981 12.995 12.755 12.792 12.35 12.516 

WaTi 605.096 421.02 995.526 584.92 2016.40 956.658 

 As we can see in Table II., it was possible to improve on all 
four measured parameters during the three traffic dynamics 
presented. It can be stated the values improved the most when a 
large number of vehicles were traveling on the route. Although 
we did not optimize using the waiting time, we did see a drastic 
change in the metric. As can be seen from Table II. and Fig. 2., 
ReLight-WCTM achieved an improvement in degree of one 
traffic dynamic difference. Examining the visual interface, there 
was no visible change in its operation compared to the original 
setting. This dispels the concern that the model has found some 
anomaly that puts one group of vehicles at an advantage while 
another group at a disadvantage, thereby achieving good 
rewards during training. The agent was indeed able to achieve 
such a high degree of improvement by fine-tuning the signal 
phases. 

 

Fig. 2. Graphical comparison of aggregated waiting times 

V. CONCLUSION 

In the presented paper we simulated the real layout of the 
main road of Pécs, which contains nine intersections. In 
cooperation with the Hungarian road operator they provided us 
measured traffic data and the phase plan currently in use. Using 
the data provided, we trained agents based on a decentralized, 
information-sharing D3QN algorithm to manage the 
intersections. The results suggest that ReLight-WCTM has 
successfully mastered efficient control methods, is able to adapt 
to the current dynamics of traffic, and is able to greatly reduce 
CO2 emission, waiting time, number of stops, and to increase 
average speed. By preserving verisimilitude, security risks have 
been reduced compared to commonly researched solutions. 
ReLight-WCTM can be integrated as a real traffic management 
tool with only a few modifications.  
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